堆排序

使用优先队列-最小/最大堆可实现。

优先队列

优先队列是一种能完成以下任务的队列:插入一个数值,取出最小的数值(获取数值,并且删除)。优先队列可以用二叉树来实现,我们称这种为二叉堆。

最小堆

最小堆是二叉堆的一种,是一颗完全二叉树(一种平衡树), 其特点是父节点的键值总是小于或者等于子节点。

实现细节(两个操作):

push:向堆中插入数据时,首先在堆的末尾插入数据,然后不断向上提升,直到没有大小颠倒时。
pop:从堆中删除最小值时首先把最后一个值复制到根节点上,并且删除最后一个数值。然后不断向下交换, 直到没有大小颠倒为止。在向下交换过程中,如果有两个子儿子都小于自己,就选择较小的

插入时间复杂度O(logN),删除时间复杂度O(logN),两个二叉堆合并时间复杂性O(NlogN).

最大堆同理。可用此结构实现堆排序算法。

/*
	最小堆
*/
package main

import "fmt"

type Heap struct {
	Size  int
	Elems []int
}

func NewHeap(MaxSize int) *Heap {
	h := new(Heap)
	h.Elems = make([]int, MaxSize, MaxSize)
	return h
}

func (h *Heap) Push(x int) {
	h.Size++

	// i是要插入节点的下标
	i := h.Size
	for {
		if i <= 0 {
			break
		}

		// parent为父亲节点的下标
		parent := (i - 1) / 2
		// 如果父亲节点小于等于插入的值,则说明大小没有跌倒,可以退出
		if h.Elems[parent] <= x {
			break
		}

		// 互换当前父亲节点与要插入的值
		h.Elems[i] = h.Elems[parent]
		i = parent
	}

	h.Elems[i] = x
}

func (h *Heap) Pop() int {
	if h.Size == 0 {
		return 0
	}

	// 取出根节点
	ret := h.Elems[0]

	// 将最后一个节点的值提到根节点上
	h.Size--
	x := h.Elems[h.Size]

	i := 0
	for {
		// a,b为左右两个子节点的下标
		a := 2*i + 1
		b := 2*i + 2

		// 没有左子树
		if a >= h.Size {
			break
		}

		// 有右子树,找两个子节点中较小的值
		if b < h.Size && h.Elems[b] < h.Elems[a] {
			a = b
		}

		// 父亲小直接退出
		if h.Elems[a] >= x {
			break
		}

		// 交换
		h.Elems[i] = h.Elems[a]
		i = a
	}

	h.Elems[i] = x
	return ret
}

func (h *Heap) Display() {
	fmt.Printf("Size:%d,Elems:%#v\n", h.Size, h.Elems[0:h.Size])
}

func main() {
	h := NewHeap(100)
	h.Display()

	h.Push(3)
	h.Push(6)
	h.Push(7)
	h.Push(27)
	h.Push(1)
	h.Push(2)
	h.Push(3)
	h.Display()

	fmt.Println(h.Pop())
	h.Display()
	fmt.Println(h.Pop())
	h.Display()
	fmt.Println(h.Pop())
	h.Display()
	fmt.Println(h.Pop())
	h.Display()
	fmt.Println(h.Pop())
	h.Display()
}

左偏树

最小堆/最大堆如果两个堆进行合并,时间复杂度较高,左偏树是可合并的二叉堆,首先满足所有的堆的性质,其外,各种操作时间复杂度都是O(logN)。

左偏树的树节点需要保存的信息有:

1.左右子树节点编号
2.此节点到有空子结点的最短距离len(空子节点的节点,就是子节点数不足2个的节点)
3.自身权值


左偏就是每个节点的左子节点的len不小于右子节点的len(但并不代表左子节点数一定不小于右子节点数),那么可知左偏树中一个节点的距离就是右儿子距离+1(或没有右儿子),且左右子树都是左偏树。

合并树A和树B的操作方法如下: 

1.如果A或B有一个是空树,返回另一个。 
2.如果A的优先级比B低,交换A,B。(确保左堆根节点小于右堆根节点) 
3.递归处理,将B和A的右子树合并。(B,Right(A)递归处理) 
4.如果合并过后A的右儿子距离大于A的左儿子,交换A的左右儿子。(确保左儿子距离大于右儿子) 
5.更新A的距离。

左偏树合并操作合并的是两棵左偏树,对于堆的插入,就是合并一棵树和一个节点,对于堆的删除,就是合并根的两棵子树。

/*
	左偏树
*/
package main

import (
	"fmt"
)

type LeftistHeap struct {
	Root *Node
}

type Node struct {
	Data       int
	Distance   int
	LeftChild  *Node
	RightChild *Node
}

func New() *LeftistHeap {
	h := new(LeftistHeap)
	return h
}

func (n *Node) Dist() int {
	if n == nil {
		return -1 // 空节点距离为-1
	}
	return n.Distance
}

func (h *LeftistHeap) Push(data int) {
	newNode := new(Node)
	newNode.Data = data

	h.Root = h.Root.Merge(newNode)
}

func (h *LeftistHeap) Pop() int {
	if h.Root == nil {
		return -1 // pop完
	}

	data := h.Root.Data
	h.Root = h.Root.LeftChild.Merge(h.Root.RightChild)
	return data
}

// 合并两棵左偏树
func (A *Node) Merge(B *Node) *Node {

	// 一棵树为空返回另外一棵树
	if A == nil {
		return B
	}

	if B == nil {
		return A
	}

	leftHeap := A
	rightHeap := B

	// 使左堆做为合并后的根节点
	if A.Data > B.Data {
		leftHeap = B
		rightHeap = A
	}

	// 递归:左堆的右子树和右堆进行合并,作为左堆右子树
	leftHeap.RightChild = leftHeap.RightChild.Merge(rightHeap)

	// 树翻转左右,确保左儿子距离大于右子
	if leftHeap.RightChild.Dist() > leftHeap.LeftChild.Dist() {
		leftHeap.LeftChild, leftHeap.RightChild = leftHeap.RightChild, leftHeap.LeftChild
	}

	if leftHeap.RightChild == nil {
		leftHeap.Distance = 0
	} else {
		leftHeap.Distance = leftHeap.RightChild.Dist() + 1
	}

	return leftHeap
}

// 递归先序排序
func (n *Node) Display() {
	if n == nil {
		fmt.Println("null")
		return
	}
	fmt.Println(n.Data)
	fmt.Printf("Node:%d,Left child:", n.Data)
	if n.LeftChild != nil {
		n.LeftChild.Display()
	} else {
		fmt.Print("null")
	}
	fmt.Println()
	fmt.Printf("Node:%d,Right child:", n.Data)
	if n.RightChild != nil {
		n.RightChild.Display()
	} else {
		fmt.Print("null")
	}
	fmt.Println()
}

func (h *LeftistHeap) Display() {
	h.Root.Display()
}

func main() {
	n := New()
	n.Display()

	fmt.Println("---")

	n.Push(3)
	n.Push(1)
	n.Push(5)
	n.Push(8)

	n.Display()

	fmt.Println(n.Pop())
	fmt.Println(n.Pop())
	fmt.Println(n.Pop())
	fmt.Println(n.Pop())
	fmt.Println(n.Pop())
	fmt.Println(n.Pop())

}